

General Editors

1. Prof. S. Kevin,

Professor of Commerce (Retd), University of Kerala

2. Prof. John Jacob Kattakayam,

Professor of Sociology (Retd), University of Kerala

3. Dr. E.V Sonia,

Scientist, Rajiv Gandhi Centre for Biotechnology, Trivandrum

4. Prof. A. Jamila Beegum,

Professor of English (Retd), University of Kerala

eBook Series

The eBook series of the University of Kerala, launched under the auspices of the

Internal Quality Assurance Cell of University of Kerala, has multiple aims--to

provide a platform for speedy publications of scholarly works; to promote

dissemination of scholarly thoughts and new findings in a free manner, under a

Copy left license; and to promote outreach activities of the University of Kerala. The

opinions expressed in this eBook are not opinions of the University of Kerala. The

author is responsible for any copyright infringement and the University of Kerala's

responsibility shall be limited to withdrawing the e Book.

This work is released under Creative Commons CC-BY-NC-ND (Attribution-

NonCommercial-NoDerivs) license, details of which are available at

https://creativecommons.org/licenses/ bync-nd/3.0/

Internal Quality Assurance Cell

University of Kerala

2016

Parallel Programming - A Pedagogic

Introduction

Biji C. L
Research Scholar,

Dept. of Computational Biology and Bioinformatics

University of Kerala

eBook Series No.5

Internal Quality Assurance Cell

2016

Contents
Introduction ... 1

1.1 Multitasking .. 1

1.2 Parallel Processing ... 1

1.3 Evolution of Parallel Programming ... 2

Cluster Computing and Message Passing Interface (MPI) 4

2.1 Some basic concepts in MPI ... 4

2.1.1 MPI communication world .. 5

2.1.2 Environmental subroutines ... 7

2.1.3 Collective communication subroutines ... 7

2.1.4 Point to point communication subroutines ... 8

2.1.5 MPI subroutines for manipulating files .. 10

2.1.6 MPI subroutines for memory allocation ... 13

Parallel Programming Tutorials using MPI ... 14

Parallel Programming in Bioinformatics .. 25

4.1 Toy examples ... 25

4.2 CLUSTAL-MPI ... 33

4.3 COMRAD-MPI .. 36

References... 38

PREFACE

The eBook serves as a beginners guide on teach fundamentals of parallel

programming with message passing interface and its application in Bioinformatics.

The concepts of MPI are discussed in user friendly manner through simple C

programs. The aim is to kindle interest in every user to develop MPI programs.

The eBook is organized as 4 chapters. Chapter 1 gives an introduction to

multitasking, parallel processing and evolution of programming language followed by

an overview of the parallel computing paradigm, with a few metaphors establishing

the relevance of parallel processing. Chapter 2 deals with the overview of Message

Passing Interface (MPI). The basic terminologies and keywords related to MPI are

briefly described. Chapter 3 provides parallel programming tutorials to help

understand the fundamentals of MPI programming. Chapter 4 provides the

application of parallel programming in Bioinformatics. A few toy examples and

some of the parallel programming tools in Bioinformatics are also explained.

I wish to express my gratitude to my mentor Dr Achuthsankar S.Nair who kindled

an interest in preparing this e-book by spotting my interest in technical writing. The

opportunity to host a parallel computing seminar further fueled my resolved. I

thank Dr. Satheesh Kumar, Dept. of Future Studies for introducing me to the

concept of Parallel Programming. Technical support by the project students Shima

V.M., Arun P.R, Manu K. Madhu and Jojo George during their tenure at the Dept.

of Computational Biology Bioinformatics is acknowledged. I wish to thank all my

fellow researchers, especially Mr. Sajil. C. K.

1

 CHAPTER 1

INTRODUCTION

1.1 Multitasking

Multitasking is a basic human skill which everyone experiences in their day- to- day

life. It’s quite easy for human to walk and chat or to eat and watch a movie

simultaneously. Similarly it comes automatically to a mother to watch television,

talk on a phone, and watch over boiling milk, at the same taking care of her toddler.

Now, taking the case of computer system, the concept of multitasking came up

during 1950’s. Multitasking is the ability to distribute different tasks at the same

time on a single operating system.

Figure 1.1: A metaphor for multi-tasking in Indian tradition

Though everyone enjoys the pleasure of surfing the internet, playing music, texting

and printing concurrently on a personal computer, many may not realize the power of

multitasking in computers. It all started with the great vision of Alan Turing to create

a machine that do human thinking and which of course had the inspiration of Charles

Babbage during Victorian times. Pilot Ace Computer was the first computer that

could do more than one task. It was designed and built in 1950’s. The buzzword

“Multitasking” for computer was coined during 1960’s. Intuitively this describes the

execution of various tasks by sharing the same resource (Central Processing Unit). In

effect, computer is handling only one task at a time, but will switch the tasks very

rapidly. The modern CPU is so powerful that, it can run thousands of instruction in

a fraction of second. So, multitasking is time slicing of the task, so as to have a better

utility of resources.

1.2 Parallel Processing

Parallel processing exploits the simultaneous use of various computer resources for

solving a computational task. The various scientific domains from astrophysics to

biology demand more computing power than traditional sequential computers for

2

analyzing the huge data generated every day. B u t n ot all computational problems

require parallel computing resources for executing the various operations. Therefore,

a primary check is required for verifying the feasibility of parallel processes. An

insightful metaphor is music. Consider the two genres of music- melody and harmony.

In melody, notes follow one after the other while in harmony; certain selected

compositions of notes are played together. Thus, a melody cannot be parallelized

whereas a harmony can be. Many day-to-day errands are amenable to parallelization.

Making fruit salad is an example. We can assign the task of cutting each of the

required fruits to different person and can finally put together all the fruits and add

sugar and ice cream. Thus, by dividing and paralleling the job, process is

completed faster.

Let us consider task of summing 1 to 100. The problem execution can be paralleled

for making it faster. For example, summing the numbers from 1 to 25 can be

assigned to master processor(node), summing numbers from 26 to 50 can be

assigned to processor 1, summing numbers from 51 to 75 can be assigned to processor

2 and the rest (from 76 to 100) to processor 3. Finally, every processor will give

their sum values to the master node and it will again sum up all the intermediate

values to get the final sum. Therefore each process requires one by fourth time

to complete verification. Thus, parallel computing improves usage of time

compared to that of sequential computing.

1.3 Evolution of Parallel Programming

Over years, programming languages have experienced tremendous evolution with

respect to the different needs of mankind. During 1940’s the programming

languages were lengthy low level machine instructions. Later in 1950’s Fortran

(FORmula TRANslation) emerged as high level scientific language and its glory can

be witnessed through its presence in aerospace, automotive and research institutes.

The most popular C language came into existence around 1972. C may be viewed

as parental language model through which many different languages have

emerged. During early 1980’s, C++ dominated the programming developers for

Figure 1.2: Parallelizable activities (a) harmony (b) Making of Fruit salad.
(Source: https://en.wikipedia.org/wiki/Orchestra,

http://freefruitsaladrecipe.blogspot.in/2014/10/recipe-for-fresh-fruit-salad-fruit.html)

3

low memory using applications. The idea of implementing scripting language

was initiated by Guido van Rossum during mid 1980’s. Python programming

became popular since then as it is many times easier to use compared to the compiled

language C and C++. With the development of massively parallel processors during

late 1980’s, parallel computing paradigms started to flourish. During late 1990’s the

cluster computers became more dominant and widely acceptable for many scientific

parallel computing centers. Today, waves of parallel computing can be experienced in

desktops and laptops. Though many different programming language support

parallel processing, the scope of the book is limited to parallel programming in C

with the support of Message Passing Interface (MPI). MPI emerged as a standard

since mid- 1990’s by simplifying the task of dividing multiple concurrent tasks

through proper synchronization.

4

CHAPTER 2
CLUSTER COMPUTING AND MESSAGE PASSING INTERFACE1

Fueled by the rapid technological development and computing paradigm shift,

many high through put and optimization problems which was hard to solve with

a normal desktop computers can be solved effectively with cluster computers. A

cluster is a type of parallel or distributed or independent computers that are

interconnected by a high speed network system. It is also known as poor man’s super

computer or commodity super computer. When comparing to the super computer

which owes a proprietary operating system, cluster use royalty free operating

system. The key benefits of cluster computing are High performance, Scalability,

System availability, High throughput, Optimization techniques, Parallel computing

techniques, low cost and time etc. Cluster computing can be achieved in many

different forms and Message passing interface (MPI) is one of them. MPI is the

dominant model used in high performance computing (hpc) and generally used as the

industry standard for writing Message Passing Programs on hpc platforms. It is a

language independent communication protocol. It allows users to create programs

that can run efficiently on most parallel architectures.

2.1 Some basic concepts in MPI

The basic terminologies using MPI is listed.

Communicator: Communicator is a group of processes that are able to communicate

to each other.

Rank: To distinguish each process of the communicator, an ID assigned to each of

them is termed as rank of the process. One processor communicates explicitly to

another process using this ID.

Size: Size is the total number of processes belonging to a communicator.

2.1.1 MPI_Communication world

Figure 2.1: MPI Communication world

Figure 2.1 shows a schematic representation of an MPI Communication World.

Communicator involves processors numbered from 0 to 5 i.e. total processors defined

1
 Earlier version of this chapter is published in Manu K. Madhu, Biji C.L., “Parallel Computing with

Message Passing Interface ”, CSI Communication volume No.38 (5), August 2014, pp 25-26.

5

is 6 hence the size of the communicator is 6. Each processor will be having a unique

ID called rank. Generally, MPI supports two kinds of communications.

 Point to point communication: Communication involving one sender and one

receiver is termed as Point to point communication. Figure 2.2 depicts a

conventional representation of a Point to point communication.

Figure 2.2: Schematic diagram of a Point to point communication

 Collective communication: While performing a task, it may be required for

one processor to communicate with all other processors of the communicator.

For instance, the Master node needs to communicate with all of its slave nodes

for integrating the end result. MPI communication can be called using

languages such as C, C++, FORTRAN77 and FORTRAN90. Figure 2.3 shows a

schematic representation of a sample collective communication.

Figure 2.3: Schematic representation of a sample Collective communication

MPI Using C

For writing an MPI program in C language, the following facts need to remember.

 Include the header file mpi.h using the command include<mpi.h>. In C

programming, all library functions are included in different header files, in

different categories with .h extension. For an MPI program, ‘include<mpi.h>’

command will include all MPI subroutines. During the MPI subroutine call

from the main program, compiler will go to MPI subroutine definition, which is

available at the MPI library and executes the function definition. After

execution, result is returned to the program from where it was called.

 C language is case-sensitive. All the MPI subroutines have the form

MPI_Subroutine. For instance in MPI_Init, MPI_Comm_size where MPI, I, and

6

C are in upper-case. Constants defined in mpi.h are all in upper-case such as

MPI_INT, MPI_SUM, and MPI_COMM_WORLD.

 In an MPI function call, the arguments that specify the address of a buffer

should be specified as pointers.

 Return code of an MPI function call should be an integer value.

 Data types defined in the C semantics is in way that is more individual. A

comparison of pre-defined MPI data types with C data types is listed in Table1.

Table 2.1: Comparison of MPI_Datatypes & C Datatypes

MPI Datatypes C Datatypes

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHOR
T

unsigned short
int MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE
MPI_PACKED

MPI Subroutines

MPI subroutine communicates among different processors in the MPI communication

world for performing jobs in parallel. MPI subroutine can be called from languages

such as C, C++, FORTRAN77 and FORTRAN90. As shown in figure 2.4, During the

MPI subroutine call in the main program, compiler will execute the function and

returns result back to the main program.

Figure 2.4: Flow of program with MPI_Subroutine

 Subroutines defined inside MPI can be classified as

 Environmental Subroutines

 Collective Communication Subroutines

7

 Point to point Communication Subroutines

2.1.2 Environmental Subroutines

These include a group of subroutines, which helps to initialize finalize the MPI

execution environment, querying processor’s rank and querying the total number of

processors in the MPI communication world. The various environmental subroutines

are listed below.

MPI_Init

The MPI execution environment is initialized using the MPI_Init subroutine. MPI

should be initialized only once and should be called before any other subroutine.

Subsequent calls to this routine is erroneous. Users can select the number of

processors for executing the task through command line arguments.The syntax is int

MPI_Init(int *argc, char **argv). The input parameters are ‘argc’- pointer to the

number of arguments and ‘argv’- pointer to the argument vector.

MPI_COMM_size

The MPI_COMM_size subroutine determines the size of the group associated with

a communicator. The syntax is int MPI_Comm_size(MPI_Comm comm, int *size),

where MPI_Comm is a MPI object, comm represents communicator and size represents

the number of processors in the group of comm.

MPI_Comm_rank

MPI_Comm_rank subroutine is used to distinguish each processor of the

communicator; an ID is assigned to each processor and is called rank of the

processor. One processor communicate explicitly to another processor using rank as

its ID and the syntax is MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_Finalize

MPI_Finalize subroutine will terminate the MPI execution environment. No other

MPI call can be made after calling MPI_Finalize()

2.1.3 Collective Communication Subroutines

For executing jobs in parallel, it is required to communicate with different

processors. The subroutines used to perform collective communication are listed

below.

MPI_Reduce

This subroutine performs a global reduction operation across all the members of a

group, and brings the result to the master node.Figure2 shows schematic

representation of process behind MPI_Reduce subroutine. In this example values 10,

40, 20 and 30 are fetched from each processor for performing a specific operation and

results returned to the output buffer of the processor 0 or root node. That is, when

MPI_Reduce subroutine is called it will combine the inputs provided in the input

buffer of each processor in the communicator, using the operation ‘*’, then returns the

result after the operation to the output buffer of the root node.

8

Figure 2.5: Schematic representation of process behind MPI_Reduce subroutine

Syntax-int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

datatype, MPI_Op op, int root, MPI_Comm comm)

Input Parameters

sendbuf: Address of send buffer (choice).

count :Number of elements in send buffer (integer).

Datatype: Data type of elements of send buffer (handle). op

:Reduce operation (handle).

Root: Rank of root process (integer). comm

:Communicator (handle).

Output Parameters

recvbuf: Address of receive buffer (choice, significant only at root). Reduce operations

can be any of the following. MPI_Reduce support a set of predefined operations, which

are listed below

Table 2.2: Possible MPI_Reduce Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum and location

2.14 Point to point Communication Subroutine

It includes the subroutines used to perform point to point communication.

MPI_Send

MPI_Send performs a standard mode block send operation, i.e. these functions do not

return value until the communication is finished. The syntax is Int

9

MPI_Send(void

*sendbuf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm),

where MPI_Datatype and MPI_Comm are object.

Input Parameters

sendbuf :Initial address of send buffer (choice)

count: Number of elements in send buffer (nonnegative integer) datatype

:Datatype of each send buffer element (handle)

dest :Rank of destination (integer) tag:

Message tag (integer)

comm : communicator (handle)

MPI_Recv

Performs a blocking receive operation. Receive buffer is a storage for count number of

consecutive elements of type specified by data type. Message received must be less than

or equal to the length of the receive buffer. The syntax is int MPI_Recv(void *recvbuf,

int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status

*status)

Input Parameters

Count: Maximum number of elements to receive (integer).

Datatype: Datatype of each receive buffer entry (handle).

source: Rank of source (integer).

tag :Message tag (integer). Comm:

Communicator (handle).

Output Parameters

recvbuf: Initial address of receive buffer (choice). Status:

Status object (status).

The data flow during MPI_Send and MPI_Recv function call is depicted below. When

the processor 0 calls an MPI_Send, the data stored in sendbuf(send buffer) is copied

into the sysbuf (system buffer). And when processor 1 makes a MPI_Recv function

call, data from sysbuf of processor0 will be copied into processor 1’s sysbuf. Then from

the sysbuf data is copied into recvbuf (receive buffer) of processor 0.

10

Figure 2.6: Data movement during MPI_Send and MPI_Recv function calls

Now, let us start MPI programming with some toy examples. For better understanding

even, an ordinary C program is included before the MPI program. We have included

three different examples to brief the concept of MPI programming.

2.1.4 MPI Subroutines for Manipulating Files

MPI provides special functions for handling files such as opening, reading, writing,

closing etc.

MPI_File_open

The first thing you always want to do with a file is to open it. The subroutine used in

C is MPI_File_open:

The syntax is int MPI_File_open (MPI_Comm comm, char filename, int

amode, MPI_Info info, MPI_File *fh);
Input Parameters

Comm: Communicator (handle). filename:

Name of file to open amode: File access

mode
info: info object (handle)

Output Parameters

fh: New file handle

The MPI_File_open will open the file using the specified file name in the comm

communicator group. The file can be accessed according to the amode specified. There

is different access mode which is shown in the table given below.

11

Table 2.3: Different MPI Access Modes

MPI_File_close This subroutine closes the mentioned file. We must ensure that

all requests associated with the file have completed before we close it. The syntax is

int MPI_File_close (MPI_File *fh);

Input Parameters

fh: File handle(handle)

MPI_File_get_size

The subroutine will return the size of the mentioned file.

The syntax is int MPI_File_get_size (MPI_File fh, MPI_Offset size);

Input Parameters

fh: file handle (handle)

Output Parameters

size : size of the file in bytes (nonnegative integer)

size is of type MPI_Offset. MPI_Offset is an integer type of size sufficient to represent

the size of the largest file supported by MPI.

MPI_File_read

MPI_File_read reads from the file specified by a file pointer. The count and datatype

of the file content should be specified. The data is stored in the buffer specified by the

user. The syntax is

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype

datatype, MPI_Status *status)

Input Parameters

fh: File handle (handle)

count : Number of elements in buffer (nonnegative integer)

datatype : Datatype of each buffer element (handle)

Output Parameters

buf: Initial address of buffer

status: Status object (Status)

MODE DESCRIPTION

MPI_MODE_RDONLY Read Only

MPI_MODE_RDWR Read and Write

MPI_MODE_WRONLY Write Only

MPI_MODE_CREATE Create the file if it does not exist

MPI_MODE_EXCL Raise an error if the file already exists

MPI_MODE_DELETE_ON_CLOSE Delete file on close
MPI_MODE_UNIQUE_OPEN File will not open concurrently else where

MPI_MODE_SEQUENTIAL File will only be accessed concurrently

MPI_MODE_APPEND Set initial position of all file pointers to the end of the file

12

Figure 2.7: Schematic representation of multiple process reading a single file

MPI_File_write

Writes to a file specified by the file pointer . The content to be written should be stored

in the buffer. The count and datatype must be specified. The syntax is

int MPI_File_write (MPI_File fh, void *buffer, int count, MPI_Datatype datatype,

MPI_Status *status);

Input Parameters

fh :file handle (handle)

buf :initial address of buffer (choice)

count :number of elements in buffer (nonnegative integer) datatype

:datatype of each buffer element (handle)

Output Parameters

status : status object (Status)

If no status required then use MPI_STATUS_IGNORE These two functions,

MPI_File_write and MPI_File_read are non-collective, i.e., each process does the reads

on its own. Each process can read the file differently and in its own way and time.

MPI_File_read_at_all

Unlike MPI_File_read this will read collectively from file using explicit offset, ie, Read

chunk of data from a file from specified start. The syntax is

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,int count,

MPI_Datatype datatype, MPI_Status *status)

Input Parameters

fh: File handle

offset: file offset (nonnegative integer)

count: number of elements in buffer (nonnegative integer)

datatype: datatype of each buffer element (handle)

 Output Parameters

status: status object (Status) buf: Initial

address of the buffer

13

2.1.5 MPI Subroutines for Memory Allocation

For remote memory access and message passing MPI subroutines are used for allocating

and freeing memory. The subroutines are

MPI_Alloc_mem

This subroutines is for allocating memory. The syntax is

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

Input Parameters

size: size of memory segment in bytes (non-negative integer) info:

info argument (handle)

Output Parameters

baseptr: pointer to beginning of memory segment allocated

MPI_Free_mem

This subroutine for freeing the memory allocated by using MPI_Alloc_meThe

syntax is

int MPI_Free_mem(void *base)

Input Parameters

base: Initial address of memory segment allocated by MPI_Alloc_mem (choice).

Program 2.1 Example for MPI_Alloc_mem and MPI_Free_mem

1 #include <stdio.h>
2 int main(int argc,char **argv)
3 {
4 int (* arr)[50][50];
5 MPI_Alloc_mem(sizeof(int)*50*50, MPI_INFO_NULL, &arr);
6 (*arr)[5][3] = 2;
7 printf("%d",arr[5][3);
8 MPI_Free_mem(arr);
9

10 }

14

CHAPTER 3
PARALLEL PROGRAMMING TUTORIAL USING MPI2

Installation

MPI enabled parallel computing environment can be installed on our personal

computers or laptops with Linux operating system using the following command on

the terminal.

>sudo apt-get install libcr-dev mpich2

mpich2-doc

If you are using your personal computers or laptops, then the number of processors are

limited to either 2 or 4 based on dual or quad core processors.

The experiments can even be run over a Rocks cluster (Rocks version 6.1 (Mamba) with

Cent OS 6.3-64 bit version) which is an implementation of "Beowulf" cluster, running

Sun Grid scheduler for job submissions.

For better understanding the concepts of parallel programming, ordinary C program

is included before the MPI Programming.

Exercise 1: A trivial example for printing

Case 1: Using C

Program 3.1 A trivial example for printing using C

1 #include <stdio.h>
2 int main(int argc,char **argv)
3 {
4 printf("Namasthe Keralam!\n");
5 }

The command line syntax for the compilation of C program

$gcc namste.c

$./a.out

The output is listed below.

Namaste Keralam!

Case 2: Using MPI
Program 3.2 A trivial example for printing using MPI

1 #include <stdio.h>

2 #include <mpi.h>

3 int main(int argc, char **argv)

4 {

5 int myid,numprocs,i;

6 MPI_Init(&argc,&argv);

7 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

8 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

9 printf("Namasthe Keralam... %d of %d\n",myid,numprocs);

2
 Programs are developed in association with the project students Arun P.R, Manu K. Madhu and Jojo George during

their tenure at the Department of Computational Biology & Bioinformatics

15

10 MPI_Finalize();

11 }

In the above program ‘myid’ denotes the identity of processor and ‘numprocs’ denotes

the number of processors required for distributing the given task. The command line

syntax for the compilation of MPI program and the output is listed. In the above

example, number of process defined is 4.Hence, four different copies of the program is

generated and will be distributed to the 4 processors for executing the jobs in parallel.

$mpicc namaste.c

$mpirun -np 4 ./a.out

Namaste Keralam! from processor 0 of 4

Namaste Keralam! from processor 1 of 4

Namaste Keralam! from processor 2 of 4

Namaste Keralam! from processor 3 of 4

Now, consider another program of printing odd numbers from 1 to 100.

Exercise 2: Print the odd numbers from 1 to 100

Case 1: Using C

Program 3.3 Print the odd numbers from 1 to 100 using C

1 #include <stdio.h>
2 main()

3 {
4 inti;
5 i=1;
6 while(i<100)
7 {
8 if(i%2==1){
9 printf("%d\n",i);
10 }

11 i++;

12 }
13 }

On Compilation using gcc odd.c will print all the odd numbers between 1 to 100. So

let us try to parallelize the operations for better utilization of the processor time by

distributing the task among 10 different processors.

Case 2: Using MPI

Program 3.4 Print the odd numbers from 1 to 100 using MPI

1 #include<stdio.h>

2 #include<mpi.h>

3 int main(int argc, char **argv)

4 {

5 int myid,numprocs,i;

6 MPI_INIT(&argc,&argv);

7 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

8 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

16

9 for(i=myid*10+1;i<=myid*10+10;i++)

10 {

11 if(i%2==1)

12 printf("\n Odd numbers from %d to %d ",myid+1,i);

13

14 }

15 MPI_Finalize();

16

17 }

On compilation using

$mpicc odd_mpi.c

$mpirun –np 10 ./a.out will distribute the task of computing odd numbers from 1 to

10 on processor 1 followed by 11 to 20 on processor 2 till 91 to 100 on processor 3.

The processors will execute the task concurrently and will display the result.

As a next case consider the program of printing square of 10 numbers.

Exercise 3: Print the square of 10 numbers

Case 1: Using C
Program 3.5 Print the square of 10 numbers using C

1 #include<stdio.h>

2 main()

3 {

4 int a[10], i;

5 printf("Enter 10 integers\n");

6 for (i=0; i<10; i++)

7 {

8 scanf("%d", &a[i]);

9 }

10 for (i=0; i<10; i++)

11 {

12 printf("square of %d =%d\n", a[i], a[i]*a[i]);

13 }

14 }

On compilation, the program asks for inputting 10 different numbers. Later the

squares are displayed on the screen.

While performing parallelization, for better utilization of memory collective

communication model can be included. In this case, we can collect the input array on

the master node and the required input data may be shared among different

processor based on the task. MPI_Bcast subroutine can broadcast the data from

master node to the different processors. Let us try to parallelize the serial code by

distributing the task among 5 different processors.

17

Program 3.6 Print the square of 10 numbers using MPI

1 #include<stdio.h>

2 #include<mpi.h>

3 main (int argc,char **argv)

4 {

5 int a[10],j;

6 int unused attribute ((unused));

7 printf(" Enter 10 integers \n");

8 for(j =0;j<10;j++)

9 {

10 unused = scanf("%d",&a[j]);

11 }

12 int myid,numprocs ,k;

13 MPI_Init(&argc,&argv);

14 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

15 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

16 MPI_Bcast(&a,10,MPI_INT,0,MPI_COMM_WORLD);

17 for (k= myid*2;k <= myid*2+2;k++){

18 printf (" square from %d\n of %d\n is %d\n",myid+1,a[k],a[k]*a[k]) ;

19 }

20 MPI_Finalize() ;

21 return 0;

22 }

On execution with $mpicc squarempi.c

$mpirun –np 5 ./a.out, the first two data will be transmitted to first processor, then

next two data to processor 2 till the final two data to processor 5. Finally the squares

will be listed out by different processors.

Let us try to further explore the world of MPI with the calculation of factorial of a

number.

Exercise 4: Print the factorial of a number n

Case 1: Using C
Program 3.7 Print the factorial of a number n using C

1 #include<stdio.h>

2 int factorial (int n)

3 {

4 inti;

5 int fact=1;

6 if (n>1)

7 for (i=2;i<=n;i++)

8 fact*=i;

9 return(fact);

10 }

18

11 main()

12 {

13 int n;

14 printf("enter a number");

15 scanf("%d", &n);

16 printf("/n Factorial of %d = %d \n",n, factorial(n));

17 }

As factorial involves a continuous multiplication, a separate function may be created

tor computing the factorial of number. On execution the input will be passed to the

factorial function and in a serial way the multiplication is performed.

Now let us try to automatically distribute the work among different processor

using MPI! MPI_Bcast and MP_Reduce subroutines will help for collective

communication and synchronization of concurrent task.

Case 2: Using MPI
Program 3.8 Print the factorial of a number n using MPI

1 #include<stdio.h>

2 #include<mpi.h>

3 int main(int argc,char **argv)

4 {

5 int myid,numprocs,i,n,lm,j,mod;

6 int fact,rslt=1;

7 MPI_Init (&argc,&argv);

8 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

9 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

10 int unused attribute ((unused));

11 if(myid==0)

12 {

13 printf(" Enter the number to find the factorial \n ");

14 unused = scanf("%d",&n);

15 }

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

lm=n/numprocs;

mod=n%numprocs;

for(i=myid*lm +1;i<=myid*lm+lm;i++)

{

rslt=rslt*i;

printf(" The multiplication from %d is %d\n",myid+1,rslt);

}

16

17

18

19

20

21

22

23

24 if(mod!=0)
25 {
26 if(myid==numprocs-1)
27 {
28 for(j=i;j<=(myid+1)*lm+mod;j++)
29 {
30 rslt=rslt*j;
31 printf(" The multiplication from %d is %d\n",myid+1,rslt);
32 }
33 }
34 }

19

On execution based on the available processor, the number will be divided

among different processors and will carry a local multiplication at different

processors and the products are accumulated at master node using MPI_Reduce.

Example 5: MPI Program to find sum of marks obtained in 1st 2nd and 3rd

years and total marks obtained in degree exam.

Table 3.1: The marks scored by Rinky in her degree exams.

 sub1 sub2 sub3 sub4 sub5

1st year 40 30 50 30 40

2nd year 50 30 50 40 40

3rd year 30 30 40 50 50

35 MPI_Reduce(&rslt,&fact,1,MPI_INT,MPI_PROD,0,MPI_COMM_WORLD);
36 if(myid==0)
37 {
38 printf("\n The factorial of the Given number %d is %d ",n,fact);
39 }
40 MPI_Finalize() ;
41 return 0;
42 }

20

Case1 : Using C

Program 3.9 Program to find sum of marks

1 #include <stdio.h>

2 int main(intargc,char **argv)

3 {

4 int myid, numprocs,i,j,sum[3],tsum=0;

5 int degreeMarks[3][5]=

6 {

7 {40, 30, 50, 30,40} , //Degree first year marks

8 {50, 30, 50, 40,40} , //Degree second year marks

9 {30, 30, 40, 50,50} //Degree third year marks

10 };

11 for(i=0;i<3;i++)

12 {

13 sum[i]=0;

14 }

15 for(i=0;i<3;i++)

16 {

17 for(j=0;j<5;j++)

18 {

19 sum[i]=sum[i]+degreeMarks[i][j];

20 }

21 printf("Year %d total marks=%d\n",i+1,sum[i]);

22 }

23 for(i=0;i<3;i++)

24 {

25 tsum=tsum+sum[i];

26 }

27 printf("Total marks obtained in Degree Examinations=%d\n",tsum);

28 }

OUTPUT

$ gcc degreeMarksN.c

$./a.out

Year 1 total marks=190 Year 2

total marks=210 Year 3 total

marks=200

Total marks obtained in Degree Examinations=600

21

Case 2: Using MPI

Program 3.10 Program to find sum of marks using MPI

1 #include<stdio.h>

2 #include<mpi.h>

3 int main(int argc,char **argv)

4 {

5 int myid, numprocs,i,sum=0,tsum=0;
6 int degreeMarks[3][5]=
7 {
8 {40,30,50,30,40},
9 {50,30,50,40,40},
10 {30,30,40,50,50}
11 };
12 MPI_Init(&argc,&argv);
13 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);
14 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);
15 for(i=0;i<5;i++)
16 {
17 sum=sum+degreeMarks[myid][i];
18 }
19 printf("\nMARK OF %d YEAR IS %d\n",myid+1,sum);
20 MPI_Reduce(&sum,&tsum,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
21 if(myid==0){
22 printf("\nTOTAL MARKS OBTAINED IN DEGREE EXAM IS %d\n",tsum);
23 }
24 MPI_Finalize();
25 }

OUTPUT

$ mpicc degreeMarks.c

$ mpirun -np 3 ./a.out Year 1

total marks=190 Year 2 total

marks=210 Year 3 total

marks=200

Total marks obtained in Degree Examinations=600

Let us focus on MPI_Send and MPI_Recv subroutine used for point to point

communication. These subroutines are used to pass a message from one processor to

another.

Example 6: Write a MPI program to send the message “Message from Neymar is: Hi

Messi, welcome to MPI WORLD “ from Processor 0 to processor 1.

22

Program 3.11 Program for Point to Point Communication

1 #include<stdio.h>

2 #include<mpi.h>

3 #define MESSY 0

4 #define NEYMAR 1

5 int main(int argc, char *argv[])

6 {

7 int myid,numprocs;

8 char *msg;

9 MPI_INIT(&argc,&argv);

10 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

11 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

12 MPI_Status status;

13 if(myid==MESSY)

14 {

15 MPI_Recv(&msg,30,MPI_CHAR,1,123,MPI_COMM_WORLD ,&status);

16 printf("\nMessage from NEYMAR IS %s \n",msg);

17 }

18 if(myid==NEYMAR)

19 {

20 msg="Hi Messy, Welcome to MPI World";

21 MPI_Send(&msg,30,MPI_CHAR,0,123,MPI_COMM_WORLD);

22 printf(" \nMessage sent...\n");

23 }

24 MPI_Finalize();

25 }

OUTPUT

$ mpicc Message.c

$ mpirun -np 2 ./a.out

Message from Processor 0 to Processor 1 is: Welcome to the University of Kerala.

23

Program 3.12 Example for MPI_File_read

1 #include<stdio.h>

2 #include<string.h>

3 #include<stdlib.h>

4 #include<mpi.h>

5

6 int main (int argc ,char *argv[])

7 {

8 int numprocs,rank,size,mysize;

9 char buffer[100];

10 MPI_File fh;

11 MPI_Status status;

12 MPI_Init(&argc,&argv);

13 MPI_Offset filesize;

14 MPI_Comm_size(MPI_COMM_WORLD ,&size);

15 MPI_Comm MPI_File_open(MPI_COMM_WORLD, "test.txt", MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

16 MPI_File_get_size(fh, &filesize);

17 MPI_File_read(fh, buffer, 50, MPI_CHAR,MPI_STATUS_IGNORE);

18 printf(" Rank %d \n %s",rank,buffer);

19 MPI_File_close(&fh);

20 MPI_Finalize() ;

21 return 0;

23

24 }

OUTPUT

$ mpicc example.c

$ mpirun -np 2

./a.out Rank 0

Hai how are you

University of

Kerala Rank1

Hai how are you

Universiy of Kerala

24

Program 2.2 Example for MPI_File_write

1 #include<stdio.h>

2 #include<string.h>

3 #include<stdlib.h>

4 #include<mpi.h>

5

6 int main (int argc ,char *argv[])

7 {

8 int numprocs,rank,size,mysize,i;

9 int buffer[100];

10 MPI_File fh;

11 MPI_Status status;

12 MPI_Init(&argc,&argv);

13 MPI_Offset filesize;

14 MPI_Comm_size(MPI_COMM_WORLD ,&size);

15 MPI_Comm_rank(MPI_COMM_WORLD ,&rank);

16 for (i=0; i < 100; i++)

17 {

18 printf(" Rank %d \n",rank);//Display Rank

19 buffer[i] = rank*100+i;//Calculate value to write into file

20 printf("%d ",buffer[i]);//Display buffer value

21 }

22 //Open file in write mode

23 MPI_File_open(MPI_COMM_WORLD, "test1.txt",MPI_MODE_CREATE |

MPI_MODE_WRONLY, MP

24 //File write

25 MPI_File_write(fh, buffer, 100, MPI_INT, MPI_STATUS_IGNORE);

26 printf(" Rank %d has wrote the data\n",rank);

27 MPI_File_close(&fh);

28 MPI_Finalize() ;

29 return 0;
30

31

32 }

33

34 /*The file is written as binary file. So in order to view the

35 file content use command

36 >hexdump -v -e ’7/4 "%10d "’ -e ’"\n"’ <file path>

37 Example

38 >hexdump -v -e ’7/4 "%10d "’ -e ’"\n"’ //home/user/Desktop/TEST/test1.txt

39 */

Bonus Exercise

1. Write a program to print all the prime numbers between 1 and 100 using message

passing interface library.

2. Write a program to check the palindromes of a given sentence using MPI

25

CHAPTER 4
PARALLEL PROGRAMMING IN BIOINFORMATICS

With the advent of new biology, a big data is emerging in Tera byte range from

next sequencing machine. The ever growing troves of information in turn urges for

parallel programming in many computational task in bioinformatics. Ordinary

desktop computers are lacking the power of handling big biological dataset. The

scientist has to mine the large data for patterns that may advance the understanding of

modern medicine. Many computationally intensive problems in computational

biology like BLAST and phylogenetic analysis have already been well adapted to

high performance computing (Albert Y. Zomaya, 2006). The execution on parallel

architecture drastically improves the speed. Above all, the need for distributing

tasks over many computer processors is important for performing analysis on large

datasets. One of the greatest challenges faced by the bioinformatics community is to

adopt to the new parallel programming languages for concurrent processing. The

main objective of the section is to bridge the gap and make the user feel confident

of adapting to the parallel programming environment in Bioinformatics using

message passing interface. Initially parallel programming concepts in

Bioinformatics are explained using a few toy examples which is further followed

by overview of a few existing parallel programming tools in Bioinformatics.

4.1 Toy examples

Bioinformatics is the science of telling story of life using a set of sequences. Sequence

analysis is one of the major research areas in the field of computational biology

and Bioinformatics. Let us start Parallel programming in Bioinformatics by reading

and printing a simple fasta file.

Exercise 1: Reading and printing a simple fasta file using C

Program 4.1 Program for reading and printing simple fasta file

1 #include<stdio.h>
2 #include<string.h>
3 #include<stdlib.h>
4 int main()
5 {
6 char ch, file_name[50];
7 FILE *fp;
8 printf("Enter the name of file you wish to see\n");
9 gets(file_name);
10 fp = fopen(file_name,"r"); //file open read mode
11 if(fp == NULL)
12 {
13 perror("Error while opening the file.\n");
14 exit(EXIT_FAILURE);

15
}

16 printf("The contents of %s file are :\n", file_name);
17 ch=getc(fp);
18 /* Printing The contents of the file */
19 while(ch != EOF)

26

20 {
21 printf("%c",ch);
22 ch=getc(fp);
23 }
24 }

Assume that we have a small fasta file. On compiling gcc seqprint.c will provide an

output in a sequential order as shown below.

The contents of tst.fa file are: AAGTCTC

AAGGTTTTCC AACCCCTTTT

Exercise 1: Reading and printing a simple fasta file using MPI

Program 4.2 Program for Reading and printing a simple fasta file using MPI

1 #include<stdio.h>
2 #include<string.h>
3 #include<stdlib.h>
4 #include<mpi.h>
5

6 int main (int argc ,char *argv[])

7 {
8 int numprocs,rank,i=0,j=0,k,size,mysize,start,end;
9 char ch,contents[100][300];
10 int ierr;
11 char *chunk;
12 /*file handle*/
13 MPI_File in;
14 MPI_Offset filesize,globalstart,globalend;
15 MPI_Init(&argc,&argv);
16 MPI_Comm_size(MPI_COMM_WORLD ,&size);
17 MPI_Comm_rank(MPI_COMM_WORLD ,&rank);
18 /*Open file in read mode*/
19 MPI_File_open(MPI_COMM_WORLD, "sss.fa",
20 MPI_MODE_RDONLY, MPI_INFO_NULL, &in);
21 /*No: of characters in file including ’EOF’ and ’\n’*/
22 MPI_File_get_size(in, &filesize);
23 printf("\n File Size is %lld", filesize);
24 filesize--; /* get rid of EOF */

25 /*Divide the filesize into equal sizes so that

26 each process can read this much

characters*/ 27 mysize = filesize/size;
28 printf("\n My size.. %d\n",mysize);
29 /*Read should start at this position*/
30 globalstart = rank * mysize;
31 /*Read should end at this position*/
32 globalend = globalstart + mysize -

1; 33 /*If last rank then read should end at the

last

file character*/
34 if(rank==size-1) globalend = filesize-1;
35 /* Buffer to store the data*/
36 chunk = malloc((mysize + 1)*sizeof(char));
37 /*Read mysize characters
38 from the file except last process*/
39 MPI_File_read_at_all(in, globalstart,

chunk,

40 mysize, MPI_CHAR,

MPI_STATUS_IGNORE);

41 chunk[mysize] = ’\0’;//Get rid of ’\n’
42 printf("\nProcess %d \n",rank);
43 printf("%s",chunk);

27

44 MPI_File_close(&in);
45 MPI_Finalize() ;
46 return 0;
47 }

On compilation mpicc seqprintpara.c and running mpirun -np 3 ./a.out

Exercise 2: Printing dimer frequency pattern and count using C

Program 4.3. Program for printing dimer frequency pattern and count using C.

1 /* This program get input from a file the file contain the characters of DNA

2 sequence A,C,G,T and find diffrent combinations of that

3 * characters like AA, CC,AT,AG etc... and count the no.of patterns in

4 that sequence. This program done in serialy */
5

6 #include<stdio.h>
7 #include<string.h>
8 #include<stdlib.h>
9

10 int main(int argc,char **argv)
11 {

12 int myid,numprocs,i,j,l,count,fl=0,p,x,y,a,b=0,cm,lm,cl=0,m,r,s;
13 char names[25];
14 char sr[6]="",temp[25]="",test[25],ch,file_name[25],chr,saq[25][25];
15 FILE *fp;
16 /* the structure created for sequence it contain the sequence, patterns
17 in that sequence no.of patterns in the sequence*/
18 typedef struct pat
19 {
20 char seq[25];
21 char pt[2];

22 int c;
23 };
24 printf("Enter the name of file you wish to see\n");
25 gets(file_name);
26 fp = fopen(file_name,"r"); // read mode
27 if(fp == NULL)
28 {
29 perror("Error while opening the file.\n");
30 exit(EXIT_FAILURE);
31 }
32 printf("The contents of %s file are :\n", file_name);
33 ch=getc(fp);

34 i=0;

35 j=0;

36 /* Printing The contents of the file */

37

38 while(ch != EOF)

39 {

40 printf("%c",ch);

41 saq[i][j]=ch;

42 j++;

43 if (ch == ’\n’)

44 {

28

45 cl=cl+1;

46 i=i++;

47 j=0;

48 }

49 ch=getc(fp);

50 }

51

52

53 /* Creating structure variable for each line for example in the file contain 2 line t

54

55 struct pat pa[cl][10];

56 for(i=0;i<cl;i++)

57 {

58 strcpy(pa[i][0].seq,saq[i]);

59 }

60 fclose(fp);

61 l=strlen(names);

62 p=l;

63 printf("%d \n",cl);

64 /* finding the pattern and counting the no.of patter in that sequence */

65 for(i=0;i<cl;i++)

66 {

67 /* Codes for finding the patterns in the sequence */

68 strcpy(test,pa[i][0].seq);

69 l=strlen(test);

70 m=0;

71 j=0;

72 sr[0]=test[0];

73 sr[1]=test[1];

74 strcpy(pa[i][j].pt,sr);

75 y=0;

76 while(m<l)

77 {

78 sr[0]=test[m];

79 sr[1]=test[m+1];

80 fl=strcmp(pa[i][j].pt,sr);

81 y=0;

82 while(y<=j)

83 {

84 a=strcmp(pa[i][y].pt,sr);

85 if(a==0)

86 {

87 b++;

88 }

89 y++;

90 }

91 if ((fl != 0) && (b == 0))

29

92 {

93 j++;

94 strcpy(pa[i][j].pt,sr);

95 }

96 m=m+2;

97 b=0;

98 }

99

100 /* Codes for counting the no.of patterns in that sequence */

101 for(fl=0;fl<=j;fl++)

102 {

103 strcpy(names,test);

104 strcpy(sr,pa[i][fl].pt);

105 for(r=0;r<l/2;r++)

106 {

107 cm=strncmp(sr,names,2);

108 if(cm==0)

109 {

110 count=count+1;

111 }

112 strcpy(temp,"");

113 for(x=0,y=2;y<l;x++,y++)

114 {

115 temp[x]=names[y];

116 }

117 strcpy(names,temp);

118 }

119 pa[i][fl].c=count;

120 count=0;

121 }

122 /* Printing the sequence,patterns and no.of patterns in that sequence */

123 printf(" The no of sequences in the given line %s is \n",pa[i][0].seq);

124 for(s=0;s<j;s++)

125 {

126 printf(" %s ",pa[i][s].pt);

127 printf(" %d\n",pa[i][s].c);

128 }}}

On Compilation and running the program will serially computer all the

dimers will display the result as shown below

Enter the name of file you wish to see

tst.fa The contents of tst.fa file are :

AGTCTC

AAGGTTTTCC

AACCCCTTTT

The no of sequences in the given line

30

AGTCTC is AG 1

TC 2

The no of sequences in the given line AAGGTTTTCC is

AA 1
GG 1

TT 2
CC 1

The no of sequences in the given line

AACCCCTTTT is AA 1

Exercise 2: Printing Dimer frequency pattern and count using

MPI

Program 4.4 Program for printing dimer frequency pattern and count using MPI.

1 /* This program get input from a file the file contain the

2 characters of DNA sequence A,C,G,T and find different combinations of that

3 * * characters like AA, CC,AT,AG ... count the no.of patterns in that sequence.

4 This program done in parallel */

5

6 #include<stdio.h>

7 #include<mpi.h>

8 #include<string.h>

9 #include<stdlib.h>

10 int main(int argc,char **argv)

11 {

12 int myid,numprocs,i,j,l,count,fl=0,p,x,y,a,b=0,cm,lm,cl=0,m,r,s;

13 char names[25];

14 char sr[6]="",temp[25]="",test[25],ch,file_name[25],chr,saq[25][25];

15 FILE *fp;

16 /* the structure created for sequence it contain the sequence ,

17 patterns in that sequence no.of patterns in the sequence*/

18 typedef struct pat

19 {

20 char seq[25];

21 char pt[2];

22 int c;

23 };

24 MPI_Init(&argc,&argv);

25 MPI_Comm_size(MPI_COMM_WORLD ,&numprocs);

26 MPI_Comm_rank(MPI_COMM_WORLD ,&myid);

27 MPI_Status status;

28 /* The file name is copied to file_name the input data is in tst.fa*/

29 strcpy(file_name,"tst.fa");

30 fp = fopen(file_name,"r"); //file open read mode

31 if(fp == NULL)

32 {

31

33 perror("Error while opening the file.\n");

34 exit(EXIT_FAILURE);

35 }

36 printf("The contents of %s file are :\n", file_name);

37 ch=getc(fp);

38 i=0;

39 j=0;

40 /* Printing The contents of the file */

41 while(ch != EOF)

42 {

43 printf("%c",ch);

44 saq[i][j]=ch;

45 j++;

46 if (ch == ’\n’)

47 {

48 cl=cl+1;

49 i=i++; 50

 j=0;

51 }

52 ch=getc(fp);

53 }

54 /* Creating structure variable for each line for example in the file contain

55 2 line then it will create 2 structure variable*/

56 struct pat pa[cl][10];

57 for(i=0;i<cl;i++)

58 {

59 strcpy(pa[i][0].seq,saq[i]);

60 }

61 fclose(fp);

62 printf("%d \n",cl);

63 /* Each sequence is processed separately in Each processor */

64 printf("The Out put from processor %d is", myid+1);

65 i=myid;

66 /* Codes for finding the patterns in the sequence */

67 strcpy(test,pa[i][0].seq);

68 l=strlen(test);

69 m=0;

70 j=0;

71 sr[0]=test[0];

72 sr[1]=test[1];

73 strcpy(pa[i][j].pt,sr);

74 y=0;

75 while(m<l)

76 {

77 sr[0]=test[m];

78 sr[1]=test[m+1];

32

79 fl=strcmp(pa[i][j].pt,sr);

80 y=0;

81 while(y<=j)

82 {

83 a=strcmp(pa[i][y].pt,sr);

84 if(a==0)

85 {

86 b++;

87 }

88 y++;

89 }

90 if ((fl != 0) && (b == 0))

91 {

92 j++;

93 strcpy(pa[i][j].pt,sr);

94 }

95 m=m+2;

96 b=0;

97 }

98 /* Codes for counting the no.of patterns in that sequence */

99 for(fl=0;fl<=j;fl++)

100 {

101 strcpy(names,test);

102 strcpy(sr,pa[i][fl].pt);

103 for(r=0;r<l/2;r++)

104 {

105 cm=strncmp(sr,names,2);

106 if(cm==0)

107 {

108 count=count+1;

109 }

110 strcpy(temp,"");

111 for(x=0,y=2;y<l;x++,y++)

112 {

113 temp[x]=names[y];

114 }

115 strcpy(names,temp);

116 }

117 pa[i][fl].c=count;

118 count=0;

119 }

120 /* Printing the sequence,patterns and no.of patterns in that sequence */

121 printf(" The no of sequences in the given line %s is \n",pa[i][0].seq);

122 for(s=0;s<j;s++)

123 {

124 printf(" %s ",pa[i][s].pt);

125 printf(" %d\n",pa[i][s].c);

33

126 }

127 MPI_Finalize();

128 }

On compilation using mpicc dimermpi.c and running mpirin –np 3 ./a.out will

produce the following result.

The contents of tst.fa file are :

AGTCTC

AAGGTTTTCC AACCCCTTTT

The Output from processor 1 is

The no of sequences in the given line AGTCTC is

AG 1

TC 2

AGTCTC AAGGTTTTCC

AACCCCTTTT

The Output from processor 2 is

The no of sequences in the given line AAGGTTTTCC is

AA 1
GG 1
TT 2

CC 1
AGTCTC

AAGGTTTTCC AACCCCTTTT

The Output from processor 3 is

The no of sequences in the given line AACCCCTTTT is

AA 1

CC 2

TT 2

4.2 CLUSTAL- MPI

The huge data emerges out from the Bioinformatics research needs sophisticated

algorithmic methodologies for its storage, analysis, and processing. High performance

computing become inevitable in biological problems due to large run time and memory

requirements. For instance, ClustalW is a tool for aligning multiple protein or

nucleotide sequences. The technique of sequence alignment has an integral part in

many research avenues of Computational Biology Bioinformatics. Now consider

the following English strings BADDATA, BAGDATA, BIGDATA and BIODATA. It’s

very trivial example to understand the concept of alignment. The sequences are

written one below the other to highlight their maximum similarity. All the string has

sequence length as 7. As shown in figure, the * indicates similar sequences among the

distributed data and a gap indicates the dissimilarities in the sequences.

34

Figure 4.1: Example of Sequence Similarity using English string

Now considering the case with DNA sequences, CLUSTALW is the software used

analyzing the similarities among different sequences. In ClustalW, the sequences

are processed serially and the time will progressively increase as length or

number of sequences increased and the order of complexity is O(N2). The alignment

is achieved via three steps: pairwise alignment, guide-tree generation and

progressive alignment. ClustalW-MPI is a distributed and parallel implementation of

ClustalW.The source code is available

http://www.bii.astar.edu.sg/achievements/applications/clustalw/index.php. The above

specified example of English string can even be computer using ClustalW-MPI. As

sequence similarities are calculated by distributing the task, in a much faster

manner, we can get the aligned output similar to Figure 4.1. ClustalW-MPI reported a

scale up of 15.8 using 16 processor on the 500-sequence test data.

Figure 4.2: Performance improvement of CLUSTAL_MPI

To run the ClustalW-MPI requires a rock cluster with MPICH installed on it.

Multiple options are available for running CLUSTALW-MPI To make a full multiple

sequence alignment: (using one master node and 4 computing nodes), run the

following command.

%mpirun -np 5 ./clustalw-mpi -infile=dele.input

%mpirun -np 5 ./clustalw-mpi -infile=CFTR.input Let us try to align a few insulin

protein sequences. Consider that we have 7 input sequences in the test input file

http://www.bii.astar.edu.sg/achievements/applications/clustalw/index.php.

35

as shown in Figure 4.3. All the sequences need to be pair wise aligned. If the file

is processed serially, pair align time = 0.046 sec. On the other hand distributing the

task on 6 different processor will reduce the pair align time as 0.014 sec. The final

aligned output is shown in Figure 4.4.

Figure 4.3: Sample Input text file for multiple alignment

Figure 4.4: Output alignment file from CLUSTAL-MPI

36

4.3 COMRAD- MPI 3

The big data storage challenges in Bioinformatics emphasize the need for High

performance computing solutions for managing large genomic data. The genomic

compression helps to reduce the on disk “foot print” of large data volumes of

sequences. Therefore, it is of interest to describe a parallel-computing approach

using message-passing library for distributing the different compression stages in

clusters. Though the distribution of various tasks or genome data over many different

computers is difficult, genomic revolution trends demand for high performance

computing solutions for data storage and management. Compression algorithm for

large dataset requires a vast processing power and memory, which is rather

difficult to process on desktop computers. COMRAD is a sequential iterative

algorithm designed for compressing DNA sequence.

The experimental analysis of COMRAD with DNA data set in gigabytes range demands

for a long run time. For processing the malus domestica genome, 7% of time is spending

for codebook creation, substitution, clean up and encoding stages. In the current

study, our objective is to reduce the computational time by parallelizing the COMRAD

algorithm. As a first step in this direction COMRAD MPI introduce data

parallelism by dividing equally the whole genome into n batches and each batch

is processed simultaneously by a processor in the cluster computer. Further the

parallelization of substitution, clean up and encoding stages were also incorporated.

Figure 4.5 shows the flow chart of COMRAD MPI.

Figure 4.5: Flow Chart of Compression of Large Genome Dataset using COMRAD-MPI

3 Earlier version of this chapter is published in Christopher Leela Biji,Manu K Madhu, Vineetha

Vishnu, Satheesh Kumar K, Vijayakumar and Achuthsankar S Nair, "Compression of Large genomic

datasets using COMRAD on Parallel Computing Platform", Bioinformation. 2015; 11(5): 267–271.

37

The source codes are available. The experiments can be run over Rocks cluster or

on Ubuntu system with MPI environment installed.

To compress using COMRAD-MPI:

1. Split the input genomes into chunks of equal size using split -n 6 filename.fa

2. Copy the names of all the files that need to be compressed into a file

3. Run the command

./comrad.sh <file of file names>

Usage:

comrad.sh [OPTIONS] FILE comrad.sh

[OPTIONS] FILE

-n: No:of processors in the cluster

-f: Frequency threshold (default 4)

-l: Initial substring length (default 8)

-o: Output directory (default /tmp/comrad)

FILE: File name containing files to be compressed (include full path names for each

file)

eg :Compression of multiples files using two processors

./comrad.sh -n 2 test

To decompress using COMRAD: 1.Run the

command

./decomrad.sh <file of file names>

The performance of Genome Compression using parallel computing tool can be

analyzed based on the Compression run time (Sec), Compression in bits per base (bpb)

and Speedup ratio (S). Compression in bits per base and Speedup ratio is defined as

Figure 4.6: Speedup ratio and Compression time improvement with number of processors

https://sourceforge.net/projects/comradmpi/files/COMRADMPI/

38

Figure 4.6 shows the elapsed wall time improvement and speedup ratio for

Homospaiens (Mammals), Malus-domestica (Plants), Gallus gallus (Bird) and Danio

rerio (Fishes) in COMRAD-MPI. Experiment is repeated after splitting the whole

genome equally between different processors on the cluster from n=2 to 12. As

the number of processors is increased, the elapsed wall time is reduced. The

sequential COMRAD require 8 hours, 91 minutes, 86 minutes and 41 minutes to

effectively compress the homospaiens, danio rerio, gallus gallus and malus

domestica genome but the implemented COMRAD-MPI could effectively compress it

in just 3 hours, 30 minutes, 29 minutes and 15 minutes. While adding more dataset,

redundancy with in the dataset is increased and COMRAD -MPI was able to

compress multiple files relatively faster than COMRAD while maintaining the same

compression.

References

1. Michael J. Quinn, Parallel Programming in C with Mpi and Openmp, 2004

2. Achuthsankar S.Nair, T. Mahalekshmi, “Data Structures in C”, PHI

Learning Limited, 2009

3. Manu K. Madhu, Biji C.L., “Parallel Computing with Message Passing Interface”,

Computer Society of India, volume No.38 (5), August 2014, pp 25-26.

4. Manu K. Madhu, Biji C. L.,” Parallel Computing with Message Passing

Interface-Part –II”, Computer Society of India, Volume No:38(6),September 2014,

pp 32-36

5. Albert Y. Zomaya. (2006) Parallel Computing for Bioinformatics and

Computational Biology: Models, Enabling Technologies, and Case Studies. 1st ed.

John wiley sons.

6. Li, Kuo-Bin. "ClustalW-MPI: ClustalW analysis using distributed and parallel

computing." Bioinformatics, 2003, 19(12), 1585-1586.

7. Christopher Leela Biji, Manu K Madhu, Vineetha Vishnu, Satheesh Kumar

K, Vijayakumar and Achuthsankar S Nair, "Compression of Large genomic datasets

using COMRAD on Parallel Computing Platform", Bio information. 2015; 11(5): 267–

271.

